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SUMMARY 
A procedure which ensures the elimination of discretization and coding errors in the numerical solution of 
a set of governing equations describing internal turbulent convection flows is given and illustrated. The 
governing equations investigated in the validation analysis are of general form. The equations for the 
turbulence model (k-8) assume the turbulence to be isotropic. In the analysis a portion of the solution region 
uses a Lagrangian description while a Eulerian description is used elsewhere. The work was originally 
motivated by the need to validate numerical calculations performed in the modelling of cornbusting fluid 
flow within symmetric piston engines. Thus the procedure is demonstrated for an axisymmetric formulation. 
The same methodology can be even more easily applied to Cartesian-based problems using the guidelines 
given in this work. Details of the procedure are presented in a very practical format, making it possible to 
consider both simpler and more complex governing equation sets with little additional effort. Thus the 
implementation of this procedure by researchers to a variety of both turbulent and laminar internal flow 
problems should prove to be easy. 
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1. INTRODUCTION 

In general, unsteady non-reacting isotropic turbulent convection flows in axisymmetric co- 
ordinates require the simultaneous solution of six or more non-linear differential equations, 
depending on the complexity of the turbulence model. If swirl is neglected and a k-e model is 
employed to account for the turbulence, the number of equations required is six,' For internal 
flows with radiation heat transfer neglected, each of these six equations will have an average of 
approximately eight expressions.2 Depending on the equation, some of these expressions will 
themselves contain multiple terms. Assuming that these general governing equations have been 
properly derived and appropriately modified for a given application, three major tasks remain in 
order to obtain a numerical solution. The first is the discretization of each of the terms in the 
expressions for all six governing equations. This task can be simplified somewhat by arranging 
the convection and diffusion portions of these equations in a common format. The resultant 
algebraic expressions must then be properly coded into a computer solution algorithm. Lastly, 
the boundary conditions and various fluid properties must be properly specified in the code. 
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Once a convergent solution has been obtained using the resultant code, the question remains as 
to the validity of the computation. If either experimental data are available or high quality 
numerical results from other works exist for a flow scenario appropriate to the governing 
equations utilized, a qualitative analysis of the new code can be made. Favourable comparison of 
the code configured to solve such a problem (or problems) does not, however, guarantee that 
errors have not been made. The relative contribution of each term in the governing equations will 
change when the code is applied to other problems. An error in discretization or coding may not 
show up for the comparison case (or cases) chosen. Obviously, a more reliable procedure is 
needed to ensure that all errors are found and eliminated. 

The particulars of the verification procedure contained herein were developed in support of 
a much larger s t ~ d y ~ - ~  using a method first formally formulated by Shih.’ The work was 
conducted to confirm the integrity of a computational scheme developed to model the conjugate 
conduction-convection processes taking place in a heat barrier piston internal combustion 
engine with a fully functional valve. The problems associated with representing the thermal 
characteristic of a moving valve while also handling the conjugate heat exchange between a fluid 
flow field region and a metal non-flow region (with the exterior temperature boundary conditions 
specified) resulted in the creation of a number of special requirements. This combination of 
requirements further resulted in, among other things, a three-region approach! In regions 1 and 
3, shown in Figure 1, a Eulerian description is applicable. In region 1 the position of all solution 
nodal points is fixed in space and time. In region 3 the motion of all solution nodal points is 
slaved to the piston motion and they move without distortion relative to one another. In 
region 2 the mesh is stretched and compressed in accordance with the piston motion and has 

x=- 1 x=o x=l x = 2  

t > 2 

Figure 1. Solution regions 
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instead a Lagrangian description. Both the interfaces between regions 1 and 2 and between 
regions 2 and 3 required the development of a special matching proced~re.~ Thus the original 
aims of the analysis described herein were twofold: (1) the validation of several of the innovations 
required to solve the problem described above and (2) the verification of the integrity of the 
resultant solution code. 

Results of a preliminary validation analysis with the above two aims in mind are contained in 
References 6 and 7. Considered in this earlier study was the computation of the primitive 
variables u, u, k, E and Tsubject to a constant pressure flow field. Thus the integrity of the pressure 
correction scheme was not investigated. The procedure presented herein, however, includes 
a method for the validation of a pressure correction scheme for pressure fields that vary both 
spatially and with time. 

FORMULATION AND GOVERNING EQUATIONS 

A precise mathematical formulation of the general procedure employed herein to analyse error is 
contained in Reference 5. The essence of this procedure is also briefly described in verbal terms in 
Reference 8. The following paragraphs present a formulation equivalent to Reference 5 
mathematically and yet very different in format to accommodate the nomenclature in use in 
References 2-4. 

In axisymmetric co-ordinates, isotropic turbulent convection with swirl neglected requires in 
general a coupled set of six partial differential equations to adequately account for turbulence, 
energy, linear momentum and continuity. Each of the equations in this set has the same general 
form and is represented compactly below by the general transport equation in terms of the 
primitive varible 4:’ 

where 4 can be either 1, u, u, k, E or T. Equation (1) is a Lagrangian description of the flow 
applicable to piston engines and is a transformed version of the general Eulerian-based governing 
equations. The expression U is equal to u - xup, where x is the non-dimensional axial co-ordinate 
in Figure 1. The term 6, is the axial length of region 2 (Figure 1) and is a function of time. The 
term up is equal to d6,/dt and represents the velocity of the piston. Equation (1) has utility in 
region 2 as expressed. Its utility in region 1 is obtained by setting up equal to zero and 6, equal to 
distl. Similarly, its utility in region 3 is obtained by setting 6, equal to dist2 and leaving up = up. 
A summary of the s, and r, applicable to each 4 is given in Table I. In regions 1 and 3 the 
‘untransformed‘ source term S ,  can be obtained from those given in Table I using the same 
specifications given above for these two regions. 

References 6 and 7 give a description of the discretization of the general transformed flow field 
transport equation (equation (1)) along with details of the discretization of each of the source 
terms contained in Table I. For this discretization a staggered grid arrangement is employed with 
the faces of the control volume midway between nodal points. For the work in References 2-4 
and herein the power-law spatial-differencing scheme * for the approximation of the convec- 
tion-diffusion flux terms is used. Finally, implicit differencing in time is used. The resulting set of 
algebraic equations representing the transformed general transport equation for the primitive 
variable 4 becomes 
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Table I. Transformed governing equation source terms 

Continuity 1 0  0 

Axial momentum 

Perf Turbulence kinetic energy k - - CDps + d (see transformed G below)* 

Energy 

Turbulence kinetic energy E & 

dissipation rate 0, k 
I*cfT -(C16- c2 PE) + pev * u 

V.m=-- 1 au a. k2 PI c, k2 
Pr, Pr, E 

ax +; +$ P e a  =PI + C,P- 9 Y.rr = - + - p -  

where m = N, S, E, W, up = 1 a,, a, is defined in detail in Reference 3, M o  = ( p  V/At)O, superscript 

‘0’ indicates the previous (‘old’) time step and V is the volume of the control volume in question. 
For each primitive variable (6 equation (2) thus represents an algebraic approximation of the 

general governing transport equation (1). It would be nice if a series of analytical expressions for 
all the 4 s  could be found in order to test the validity of using equation (2) as an approximation of 
equation (1) for each (6. In the real world, however, an analytical solution does not exist for 
equation (1) for any of its primitive variables. Despite this fact, for the purpose of analysing the 
equivalence of equation (2) to equation (l), it will be assumed that the primitive variables u, v, k, 
E and T can be quantified analytically in such a way so as to satisfy a modified version of equation 
(2). Similarly, the combination of the u- and u-momentum equations and the continuity equation 
will be assumed to support an analytical expression for the variable P. In general it is assumed 

m 

subject to Dirichlet boundary conditions for all (6. For clarity, Dirichlet boundary conditions are 
obtained from the analytical expressions for the various 4 s  evaluated at the boundary. For the 
continuity equation (6 will still equal unity. P,  however, will equal P(x,  r, t )  and will be solved for 
numerically using the continuity equation. Pressure will thus be considered the sixth primitive 
variable instead. Obviously, no combination of (6 = 4(x, r, t) for all six primitive variables exists 
that can be used to simultaneously solve the six equations represented by equation (1) or 
equation (2). However, the correct selection of (6 = (6(x, r, t )  for all six variables can be used to 
simultaneously satisfy the six equations represented by the modification of equation (2) given 
below: 

(up + M O - S P ) ~  =C am+: + s u  + M O  (6’ + CRanal+%, (4a) 
m 
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where 

1 when error analysis utilized in computer code subject to 
Dirichlet boundary conditions, 

0 for solution of real problem subject to boundary conditions 
specified in References 2-4, 

(4b) 

Ranal+ H4 (x, t )  - SbCx, t), (44 
i a  r, a4 H4=---(pdp4)+-- pii4--- +-- 

6 ,  at 6 ,  ax a ( 6,ax) ::r( 

Thus Rana14 is obtained by simultaneously substituting the $(x, r, t) expressions for all six 
primitive variables into each of the six equations represented by equation (4c). In effect the 
4(x, y, t )  expressions become the solutions to the new set of six equations represented by equation 
(4a) subject to Dirichlet boundary conditions on all geometric boundaries and on the previous 
time step boundary. These primitive variable expressions will also satisfy a modified version of 
equation (l), namely 

It should be noted that these $(x, r,  t) expressions thus represent a set of particular solutions for 
the equation set represented by equation (5 )  and may therefore be loosely referred to as analytical 
solutions for the same. Discretization of equation ( 5 )  in a manner identical to the discretization of 
equation (1) will result in equation (4a) with C= 1. The numerical solution of equation (5) for 
Dirichlet boundary conditions specified both for all geometric boundaries and for the initial time 
boundary can thus be obtained through the solution of equation (4a) subject to these same 
boundary conditions. The results of this numerical solution are values that can be compared with 
the known solution, namely 4(x, y, t), for each primitive variable. 

For comparison with Rmal, for various 4s, an expression for Rnum, was also derived using 
equation (4a) with C =  1: 

It should be noted that the above formulation is only able to test the accuracy of the 
discretization and coding process for each of the six governing equations. It does not provide 
a means for testing the specification and coding of the wall functions in References 2-4 used as 
boundary conditions. With the expression Ranale added to the source term, the governing 
equations (4) are altered such that they are valid right up the 'wall' of the solution scheme where 
Dirichlet values are specified. It should be further noted that it is the integrity of both the 
discretization of the governing equations and the coding of the algebraic expressions that results 
from this discretization process that is being tested. It is not the testing of the validity of the 
governing equations themselves that is under scrutiny in the present analysis. 

APPLICATION TO THE TURBULENT CONVECTION PROBLEM 

The specification of $(x, I, t) for use in the validation of the scheme used in the solution of the 
particular set of governing equations given in the previous section is by no means an arbitrary 
process. As alluded to in Reference 5, these expressions should in general be chosen so that the 
truncation errors associated with a finite difference formulation vanish or are at least sufficiently 
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small. This puts upper limits on the powers of the terms used to construct each function. On the 
other hand, it is desirable that the functions chosen be made up of terms with high enough powers 
that they do not vanish when substituted into their respective governing equations. If they do 
vanish, it should only be either the result of the final differentiation of the function in one of the 
higher-order differential expressions or the result of the algebraic summations of several sub- 
expressions. Additionally, the function set must be designed in such a way so as to ensure that the 
functions interact with each other in the governing equations in a ‘reasonable’ manner. It was 
found that if the construction of one or more functions in the function set is unrealistic compared 
to others, equation (4a) either may not converge or may converge to incorrect values. 

As an example of the implementation of the above guidelines, consider the selection of the 
primitive variable P. The dominant source term in the u-momentum equation is often - aP/ax for 
internal flows. The dominant convection-diffusion term is expected to be a( pUu)/ax. A selection 
of analytical expressions for P and u which reasonably satisfy these dominant terms is preferable if 
convergence to correct values is to be guaranteed. Also, if the discretization used for aP/ax gives 
a third-order truncation error (as it does in the case of a staggered grid), the highest power of x in 
P(x, r, t) must not be greater than four. This determination will guarantee the truncation error 
( A X / ~ ) ~ ~ ~ P / ~ X ~  to be sufficiently small for reasonably fine grid spacing. All the above is also true 
for the modelling of P relative to the u-momentum equation. In the energy equation P is used, 
among other places, in the aP/dt term. When considering the Lagrangian formulation of the 
energy equation, the change in P with time must be of the same power of exponent for t as the 
change in the size of the energy equation control volume (V,) with time. The size of is in turn 
a function of d,(t). To ensure convergence to correct values, the order of the exponent associated 
with time t in the specification of P must thus contain the use of the same order of exponent oft as 
is used in the specification of s,(t). In Reference 4,6, in region 2 is specified as a trigonometric 
function which accounts for piston motion. For this error test, however, it was found necessary to 
respecify 6, in region 2 as an expression containing powers of t in order to make possible 
a correctly coupled expression for P. This combination of constraints along with others were all 
involved in the specification of P(x ,  r, t )  relative to the selection of T(x, r, t), d,(t), u(x,  r, t )  and 

Using the same type of analysis for the other primitive variables, the following specifications for 
4x3 I, 0. 

4 were arrived at after significant analytical work and much trial and error: 

u z t x ’ r ,  (7) 

v z - 3txr2, (8) 
k = C6xr(x + r)t ,  (9) 

E=Czx2r2tC7,  (10) 

T = -  C9tx2r2 + 3C9, (12) 
where C 6 ,  C , ,  C s ,  C9 and C l o  are constants (specified as 0.75, 0.8888, 500, 500 and loo0 
respectively). Although these functions all tend to infinity in magnitude as time approaches 
infinity, they are only intended for use in relatively close vicinity to t”. 

The selection of 
P =  ClOIR (13) 

was made corresponding to the assumption of a constant density fluid with a gas constant R. 
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Specification of p as a function of x, r and t instead would greatly and unnecessarily complicate 
the Ranal+ expressions. It should be noted that the selection of equation (13) for an equation of 
state also serves to decouple all the other governing equations from the energy equation. This is 
because this specification has the effect of making the fictitious test flow incompressible. In 
References 2-4, which deal with a real world problem, density is specified as a function of T, P and 
various species concentrations. Thus in References 2-4 all the governing equations are coupled. 
The equation (13) specification for density results in an average value which falls within the range 
of those expected for this property in the real calculations given in References 2-4. 

Piston motion for the error analysis within region 2 was specified as the increasing function 

6,(t")=Cllto+Clz(t")2, (14) 
where CI1 and Clz are constants equal to 0.0014826 and 00081545 respectively. Note that the 
superscript '0' on the first t indicates the old time value of t. In regions 1 and 3 the expression 
dp(tn) was set equal to the constant values distl and dist2 respectively. 

The values chosen for the seven constants CS-Cl2 are based on several considerations. First, 
they ensure that the resultant values of all 4(x, r, t) and S, are all reasonable over the range of 
x and r and the domain oft used in the test. Also, they help to enable a realistic interrelationship 
between these variables. An attempt was made to have values for the various 4 s  within the range 
of values expected in 'real' calculations.2-4 

It should be noted that in the construction of equation (7) in conjunction with equation (8) it 
was necessary to satisfy the transformed continuity equation. Further, these two specifications 
define a vector field which is well out of alignment with both the axial and radial axes when values 
of x and r are sufficiently close in magnitude. The latter is preferable in providing a good test for 
the power-law convectiondiffusion flux discretization formulation used in the analy~is.~ Finally, 
it should be noted that these specifications give algebraic expressions for V * u  which cancel to 
zero. Since V - u  expressions exist in four of the governing equations, this greatly simplifies the 
algebra of the resulting Ranal+ for these equations. 

Substitution of equations (7)-(13) into equation (4c) resulted in the expressions for Ranal# for the 
five 4s summarized in Table 11. H4 for the continuity equation is equal to zero, as is its source 
term. Boundary conditions for the error analysis are depicted in Figure 2. It should also be noted 
that because of the pressure correction in the solution of the continuity equation, it was also 
necessary to prespecify the analytical value for the pressure at one of the interior nodal points to 
serve as a pressure reference point. Whether such a specification is necessary or not is dependent 
on the algorithm used to solve for the pressure field. In the analysis conducted in References 2-4 
a pressure correction procedure was used to obtain the pressure field. In such an approach the 
continuity equation does not make use of the Dirichlet boundary conditions for pressure directly. 
It does use these conditions indirectly and they are also used directly in the computations for u, u, 
Tand P. In the exercise herein the equation of state is p =const (equation (13)). I f p  were instead 
a function of T, P and other variables, the pressure correction scheme employed would not need 
a prespecified reference point. However, allowing p to equal p ( P ,  T), for example, would, as 
mentioned earlier, result in much more complicated expressions for Ranal, than those given in 
Table 11. 

The use of the above formulation in a flow field with a combined Eulerian-Lagrangian 
description was found to require a spcial approach. It was found that in general it is simpler and 
more computationally efficient to solve regions 1, 2 and 3 together as opposed to solving in an 
iterative manner back and forth between each. When solving all regions together, the use of 
4 = +(x, r, t), is however, complicated by the fact that the transformation for the dimensional 
axial co-ordinate (2) to the non-dimensional axial co-ordinate (x) varies with region. The 
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Table 11. R.,,a, for various primitive variables (H4 - g+) 

H4 & 4 

-(x2r+jtzx3rz) -(a + b(x +r)‘) --+2b(x+r)(2xr-3 ap  r’)t---(2xr+r2)t c6 
1 

ax 3 R1 Rl 
- b(x + r)(4xr + 2x2)t 

1 ap -(- 3 X r 2  + btZxzrr”) + (a + b(x + rI2($ tx) 
R1 dr 

-- + [a + b(x + r)’] 3 tx + 2b(x + r)(x2 -4  xr) t 

+ b(x + r)($ rz + 9 xr)t 
--- ‘6  (2x2 + 3xr) t 

3 R I  

c6 -(xr(x +r) + t’xZr’($ x - fr)) 
R1 Rl 

-5 ~ z x ~ r ~ t ~ ~  + G (see transformed G below)* 

-(a1 +bl(x +r)’)(4X+$+Zr) c6t 

-2bl(x+r)(xz +4xr +r’) c6t 

x+r 
- (az + bz(x + r)2 (rZ + 2x2)2t 

-2b2(x+r)(xrz +x’r)2t CzC7 

R1 

+-(a3 + b3(x +r)’(r’ + 2x2)2tCg 

1 1 
--(x2r2 +3tzx3r3)C, 

1 

2 
CP 

CP 
+- b3(x + r)(xrZ +x2r)2tC, 

* ~ = 2 [ o + b ( x + r ) ’ ] ( f x 4 + ~ x ’ r 2 t ~ r 4 ) t 2  

o=pl, a,=&, a2=&, (Ij=- PI 

be-t, C” b , = L  C t  C r  b 3 = L  C t  R 

f i t  

RI C i  RIC,ak,’ b2=&C7QI. R,f i ,C , ’  R’=G 
E = ( q x r 4 - 4 x ~ ) b ,  t’C 2 R I  -=(ypx dP dr 2 r 3 - 2x4r)-- ,  t z c 8  - = ( d x 2 r 4 - x 4 r 2 ) t C 8  ap 

2R1 at RI 

expression of x for each region in terms of z is as follows: 

z 
1 q region 1, x=-- 

region 2, x=-* 
6, ’ 

region 3, x=l.O+ 

distl 

z-distl 

z - distl - 6, 
dist2 
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Figure 2. Dirichlet boundary conditions used in error analysis 

Thus x has a different meaning in each region. The solution to this problem was found to be the 
specification of 4 as 4 ( z ,  I ,  t) throughout all three regions instead. The meaning of z does not vary 
with region. The expressions for Rana,+(z, r, t) become identical to those given in Table I1 with all 
the xs physically replaced by zs, assuming all the xs in equations (7)-(13) are also replaced with zs. 
For applications which require only a Eulerian description, 6,  = 1,ii = u and x = z throughout. 
Thus, for such applications it is preferable to use 4(x, I ,  t). For flow solutions with a strictly 
Lagrangian description, using 4 = 4(z, r, t) should prove easier. For the latter, however, either 
approach may be used. 

During the iterative process of constructing equations (7)-( 14), discrepancies were encountered 
between the computed and analytical values at various locations. Not knowing whether these 
discrepancies were due either to coding and discretization errors or to function 4 selection, it was 
found necessary to break the problem down into smaller problems. References 6 and 7 give the 
details of the discretization of each of the source terms in Table I and break each s, down into 
sub-expressions (such as vsl, vs2, vs3, vs4 and vs5 for s,, etc.). It was found convenient to 
calculate both analytical and numerical values corresponding to each of these sub-expressions for 
comparison. This enabled the causes of various discrepancies to be quickly pinpointed. 

In addition, the solution algorithm was designed so that for most cases the primitive variables 
could be solved for numerically in a manner independent of all other variables. This was easily 
accomplished by prespecifying the analytical values of all other primitive variables at each 
solution nodal point and by then not recomputing the values of those not being solved for. Thus 
the discretization and coding of most of the primitive variables could be analysed one at a time. 
This and the specification of both the analytical and computed values of each source subterm 
enabled an exacting verification to be made of the code used for the analysis given in 
References 2-4 and 9. 
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DISCUSSION OF RESULTS 

Several series of error test runs were conducted during the development of the solution code as 
a means of checking for mistakes both in the discretization of the governing equations and in the 
actual programming of the code. The first set of tests was made on the code representation of the 
untransformed equations for u, u, k, E and T. In these tests the spacing was uniform for both the z- 
and r-co-ordinates. Afterwards, the code representation of the transformed equations for these 
same five primitive variables was tested with non-uniform spacing in the z-direction but with 
uniform spacing in the r-direction. 

At a much later date, just prior to the final data runs for the analysis of the real world problems 
reported in References 2-4, another series of tests was conducted. The results of these tests are 
given in References 6 and 7. The rationale for this later round of tests was to ensure that no errors 
had been inadvertently inserted into the programme in the interim. For all these and earlier runs 
the pressure was specified as a constant and a simplified expression for temperature was used 
instead of that given in equation (12). 

Reported herein are only the results of a series of tests conducted much more recently and 
which consider the influence of pressure gradients throughout the solution region. 

The geometric values used in the formulation of the boundary conditions for these recent runs 
(see Figure 2) are as follows: 

zxz0 =Om974 m, rsmall= 1.0144 m, rlargc= 1.06424 m, distl=O.O4 m, dist2=0.003 3333 m. 
The time domain boundary conditions corresponding to the previous time step were specified 

for 4(x, I, t - At) using a time step At = O W 0  5263 and a current time t" = 1,578 95 s. The value for 
At used is based' on 1/RPM and an RPM (revolutions per minute) of 1900. The t"-value creates 
a S,(t) that gives the desired region 2 grid spacing for the test. This selection also affected in turn 
the specification of the error elimination constants CS-Cl2 given earlier. 

The error analysis algorithm was programmed in such a way so as to facilitate the testing of the 
code representation of one primitive variable at a time as well as any combination of primitive 
variables at a time. As mentioned, those variables not being tested had to be prespecified 
analytically owing to the fact that the governing equations are coupled. 

The results of eight of the many runs conducted for the configuration given above are listed 
herein. All these runs are based on an 8 x 7 mesh (including boundary nodal points). First a series 
of individual variable runs for the primitive variables u, u, k, E, T and P were made. It was found 
that the maximum computed percentage error over the entire solution field for each variable was 
less than 0.0139%. This is despite the fact that a maximum percentage error of the order of 0.1% 
would have been deemed acceptable for these individual runs. The maximum percentage errors 
far each of the primitive variables are: u, 0.01329%; u, 0.0096%; k, 04041%; E, 0.00504%; T, 
0.0139%; P,  0.01 12%. The individual solution run for E made use of the simultaneous solution for 
k. Similarly, the solution for P required the simultaneous solutions of u and u. The least accurate 
of these individual runs was found to be the solution for the energy equation. Results of this run 
(for T) are given in Table I11 to show the typical values one can expect for such a calculation. At 
the bottom of this table the computed values of temperature are repeated. Given in addition at the 
bottom of the table are the x- and r-co-ordinate values corresponding to each of the scalar 
solution nodal points. These are thus the same positions used for k, E and P for both the individual 
and combined runs. A combined run for the variables u, u, k, E and T resulted in maximum 
percentage errors of: u, 0.01333%; u, 04099%; k, 04042%; E, 0.0052%; T, 00137%. The 
primitive variable values obtained in this run were almost identical to those obtained for each of 
the individual runs for the same variables. In Table IV the computed values of u and u for this 
combined run are given with the x- and r-co-ordinate values corresponding to each of the 
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Table 111. Energy equation data, individual run 

i 

3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5 
6 
6 
6 
6 
6 
7 
7 
7 
7 
7 
8 
8 
8 
8 
8 

- 
2 
3 
4 
5 
6 
2 
3 
4 
5 
6 
2 
3 
4 
5 
6 
2 
3 
4 
5 
6 
2 
3 
4 
5 
6 
2 

T,um 

764.94 
757.86 
747.75 
743.54 
73630 
758.84 
751.68 
74 1 *49 
737.25 
729.96 
75018 
742.94 
732.62 
728.34 
72097 
74 1 a48 
734.15 
723.71 
719.38 
71 1.93 
732.73 
72531 
714.75 
710.37 
702.84 
723093 
7 16-42 
705.73 
701.30 
693.69 

rn”m * vol YO T error 

764.89 
757.78 
747.65 
743.45 
736.24 
758.8 1 
751.64 
741-43 
737-20 
729.93 
750.16 
742.9 1 
732.58 
72830 
720.94 
741.47 
734.13 
723.67 
71935 
711.90 
732.72 
725.29 
714.72 
710.34 
702.8 1 
723.92 
71641 
705.7 1 
701.29 
693.67 

76.4103 
94.0932 
79.7972 
63.9459 
82.2141 
47.1051 
58.0067 
49.1 97 1 
39-4209 
506871 
5643227 
69.9750 
59.3466 
47.5557 
61.1469 
58.4559 
71.9839 
61.0491 
48.9234 
62.9017 
60.1231 
740419 
62.7926 
50.3204 
64.6979 
672849 
828598 
70-2746 
56.31 14 
724052 

76.4 1 19 
94.0938 
79.7990 
63,9452 
82.2148 
471081 
58.0092 
4 9  1968 
39.4228 
50.6865 
56.8260 
69.9764 
59.3465 
47.5563 
61.1441 
58,4578 
71-9863 
6 1-05 15 
48.9228 
62.9014 
60.1258 
74.0408 
62.7945 
50.3196 
64-6977 
67.2867 
82.8594 
702742 
56.3 136 
72.4048 

0006807 
0.0 108 57 
0013854 
0.012093 
0007959 
0902863 
0.00505 1 
0007993 
0@06450 
0.003980 
0002595 
0.003829 
0006657 
0-005380 
00038 10 
0.002387 
0003093 
OQO5760 
0.004624 
0003592 
0002149 
0002449 
0.004851 
0.003798 
000329 1 
0.00 166 1 
0001482 
0003122 
0.002332 
0002499 

Temperature 

j i = 3  i=4 i=5  i=6 i=7 i= 8 r 

6 7-36 x 10’ 7.30 x 10’ 721 x 10’ 712 x 10’ 7.03 x 10’ 6.94 x 10’ 1.0140 
5 7.44 x 10’ 7.37 x 10’ 7.28 x 10’ 7.19 x 10’ 7.10 x 10’ 7.01 x 10’ 1.0092 
4 7-48 x 10’ 7.41 x 10’ 7-33 x 10’ 7.24 x 10’ 7.15 x 10’ 7.06 x 10’ 1.0064 
3 758 x 10’ 7.52 x 10’ 743 x 10’ 7.34 x 10’ 7.25 x 10’ 7.16 x 10’ 0.9996 
2 7.65 x 10’ 7.59 x 10’ 7.50 x 10’ 7.41 x 10’ 7.33 x 10’ 7.24 x 10’ 0.9948 
X -04ooOO 000000 025oooO Moo00 075000 1.00000 
z 0.97000 0.97400 0.97967 0.98533 0.99100 099667 

non-scalar solution nodal points. The values for the x- and r-co-ordinates given here follow from 
the use of the staggered grid arrangement described in Reference 3. A combined run for P and 
T was also conducted. As before for P, the simultaneous solutions of u and u were required. For 
this run the maximum percentage error for P remained unchanged from that of the individual run 
(0.0112%) but the maximum percentage error for Tincreased slightly to 0.025%. Also, as can be 
seen from Tables I11 and IV, both the x- and r-spacings for all these runs are non-uniform. 

Figure 3 is a vector plot for the flow using the vector sum of the u- and v-velocity components in 
the vicinity of the scalar nodal points. The tail of each of these vectors shows the location of the 
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Table IV. Velocity field from simultaneous solution of equations for u, u, k, E and T 
~~ ~ 

u-velocity 

j i=4 i= 5 i=6 i=7 i = 8  r 

6 1-51 1-53 1.55 156 1-58 1.0140 
5 1.51 1.52 1.54 1.56 1.57 1.0092 
4 1.50 1.52 1-53 1.55 1.57 1.0064 
3 1-49 1.51 1-52 1.54 1.56 0.9996 
2 1.48 1.50 1.52 1.53 1.55 0.9950 
X -0.2oooO 0.12500 037500 062500 0,87500 
Z 0.97200 0.97683 0.98250 0.98817 0.99383 

u-velocity 

i i = 3  i=4 i = 5  i=6  i=7 i = 8  r 

6 - 1.04 - 1.05 - 1.06 - 1.06 - 1.07 - 1.07 1.0116 
5 - 1.04 - 1.04 - 1.05 - 1.05 - 1.06 - 1.07 1.0078 
4 - 1.03 - 1.03 - 1-04 - 1.04 - 1.05 - 1.06 1.0003 
3 - 1.02 - 1.02 - 1.03 - 1.03 - 1.04 - 1.04 0.9972 
X -0.4oooO OW000 0.25000 05ooOO 075000 1 *m 
Z 0.97000 Q97400 097967 098533 0.99100 099667 

.964 1 .o 

Figure 3. Velocity vector plot 

corresponding scalar primitive variables. The magnitude of the arrows represents the vector sum 
of the u- and u-vectors having the same i- and j-indices. The locations of the true tails of each of 
the individual u- and u-vectors are the x- and r-values given in Table IV for each velocity. Figures 
4-7 represent plots of isocontours of the primitive variables k, E, T and P respectively. Because of 
the extremely high accuracy involved in the numerical solution, these five figures (Figures 3-7) 
represent both the analytical and numerical solutions of the governing equations for the Dirichlet 
boundary conditions given in Figure 2. 
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. 964  1.0 

Figure 4. Turbulence kinetic energy distribution 

964 1.0 

Figure 5. Turbulence kinetic energy dissipation rate distribution 

Figure 3 makes it clear that the flow is oblique to the solution grid. An overlay of Figure 3 on 
each of Figures 4-7 makes it clear that a non-zero gradient exists for each of the dependent 
variables along the direction of flow everywhere in each of the primitive variable solution 
domains. These two conditions are the prerequisites for false diffusion to occur* if the Peclet 
numbers (P,,,, rn = e, w, n, s) of any of the mesh cells become large. As can be seen from the bottoms 
of Tables I11 and IV, the grid spacings in both the z- and r-directions have beem kept sufficiently 
small. The largest P,,,-value for any of the variables for the combined variable run given in 
Table IV is only 0.027. If values of P ,  were not so constrained, one would not expect the 
excellent comparison obtained in this study with the use of the power-law spatial-differencing 
scheme for the numerical approximation of the convection4iffusion flux terms. 
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.964 1.0 

Figure 6. Temperature distribution 

T 

- 700.00 
- 71 5.00 
- 730.00 
- 745.00 
- 760.00 

9 6 4  1.0 

Figure 7. Pressure distribution 

CONCLUSIONS 

As can be seen from the data for both the individual and combined runs given in the previous 
section, the comparison between the numerically computed values of the various 4s with the 
actual (analytical) values is excellent for all six primitive variables, both when they are computed 
individually and in combination. Such results point to the confidence that can be placed in 
numerical calculations for a set of very sophisticated governing equations, assuming the equation 
set accurately models the flow process. Also, these results demonstrate the viability of Shih’s 
debugging procedure’ to problems where a large set of complex governing equations applies. The 
procedure outlined herein has been demonstrated for fairly general governing equations. For 
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axisymmetric calculations which require modified versions of the governing equations, changes 
can easily be made to Table I1 on a term-by-term basis by either adding or subtracting the 
appropriate analytical expressions as necessary. For example, many turbulent fluid problems can 
be adequately described by a set of simpler governing equations which do not include the final 
expressions in each of the source terms given in Table I for u, u and E. For such problems the 
deletion of the final expressions given in Table I1 for the source terms (S,) for u and D is all that is 
needed to correct Table 11. No change in the source term for E is necessary. Thus it can be seen 
that, without much additional effort, other researchers will be able to adapt this work to a variety 
of problems. 

However, perhaps the most significant of the findings recorded herein is the fact that the same 
error elimination formulation may be used for both Eulerian and Lagrangian descriptions. This 
makes possible the application of this formulation, without modification, to flow field solutions 
which involve combined Eulerian-Lagrangian descriptions. Finally, this study validates the 
special matching procedure (reported in Reference 4) used to merge portions of the flow field 
having a Eulerian description with those having a Lagrangian description. 

C 

SP 
S" 
t 
T 

P 
U 

APPENDIX NOMENCLATURE 

coefficient of combined convective/diffusive flux through the designated wall of 
a control volume (m=N, S, E, W) 
sum of coefficients of combined convective/diffusive flux through control vol- 
ume walls 
number equal to unity when solving using error analysis formulation and equal 
to zero otherwise 
constants of turbulence model (1.44, 1.92, 1-00 and 0.09 respectively) 
constants used in error elimination procedure 
specific heat at constant pressure (1.0 kJ kg-' K - I )  

axial lengths of solution regions 1 and 3 respectively 
generation of turbulence kinetic energy term (untransformed and transformed 
respectively) 
differential operator defined by equation (4d) for the general primitive variable q5 
indices in axial (x and z)  and radial (r) directions respectively 
turbulence kinetic energy 
mass in a finite difference cell volume divided by the computational time 
increment 
pressure 
Peclet number (m=n, s, e, w) defined in Reference 3 
laminar and turbulent Prandtl numbers (1.0 for both) 
radial co-ordinate 
gas constant (value for air used throughout) 
source terms in untransformed and transformed governing differential equa- 
tions respectively 
portion of integrated source term which is multiplied by q5p 
portion of integrated source term 
time 
temperature 
axial velocity in Eulerian frame 
axial velocity relative to moving co-ordinate frame (Lagrangian) 
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radial velocity 
cell volume 
non-dimensional axial co-ordinate 
axial co-ordinate 
Instantaneous distance equal to the combined axial lengths of regions 1,2 and 3 

V 

V 
X 

Z 

ZP 

Greek symbols 

Y 
r 
6 
6, 
At 

PI, Pt 
E 

5 

4 
V 

Subscripts 

eff 
1 
n, s, e, w 
P, N, S, E, W 

d 
t 

Superscripts 

n 
0 

a parameter (p /Pr )  
diffusivit y 
increment 
instantaneous axial length of region 2 (z,-distl -dist2) 
time increment 
dissipation rate of turbulence kinetic energy 
laminar dynamic viscosity and turbulent viscosity respectively (p ,  is specified 
throughout as 1.78 x 
effective viscosity ( p1 + ,ut) 
density 
constants for turbulence kinetic energy and turbulence kinetic energy dissipa- 
tion rate respectively (1.0 and 1.2 respectively) 
shear stress 
primitive variable (1, u, v, k, E or T) 
divergence operator 

mz s - l )  

effective 
laminar 
cell boundary locations of finite difference grid 
nodal points of finite difference grid 
turbulent 
primitive variable (1, u, v,  k, E or T) 

new time level 
old time level 
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