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SUMMARY

A procedure which ensures the elimination of discretization and coding errors in the numerical solution of
a set of governing equations describing internal turbulent convection flows is given and illustrated. The
governing equations investigated in the validation analysis are of general form. The equations for the
turbulence model (k—¢) assume the turbulence to be isotropic. In the analysis a portion of the solution region
uses a Lagrangian description while a Eulerian description is used elsewhere. The work was originally
motivated by the need to validate numerical calculations performed in the modelling of combusting fluid
flow within symmetric piston engines. Thus the procedure is demonstrated for an axisymmetric formulation.
The same methodology can be even more easily applied to Cartesian-based problems using the guidelines
given in this work. Details of the procedure are presented in a very practical format, making it possible to
consider both simpler and more complex governing equation sets with little additional effort. Thus the
implementation of this procedure by researchers to a variety of both turbulent and laminar internal flow
problems should prove to be easy.
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1. INTRODUCTION

In general, unsteady non-reacting isotropic turbulent convection flows in axisymmetric co-
ordinates require the simultaneous solution of six or more non-linear differential equations,
depending on the complexity of the turbulence model. If swirl is neglected and a k~¢ model is
employed to account for the turbulence, the number of equations required is six." For internal
flows with radiation heat transfer neglected, each of these six equations will have an average of
approximately eight expressions.? Depending on the equation, some of these expressions will
themselves contain multiple terms. Assuming that these general governing equations have been
properly derived and appropriately modified for a given application, three major tasks remain in
order to obtain a numerical solution. The first is the discretization of each of the terms in the
expressions for all six governing equations. This task can be simplified somewhat by arranging
the convection and diffusion portions of these equations in a common format. The resultant
algebraic expressions must then be properly coded into a computer solution algorithm. Lastly,
the boundary conditions and various fluid properties must be properly specified in the code.
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Once a convergent solution has been obtained using the resultant code, the question remains as
to the validity of the computation. If either experimental data are available or high quality
numerical results from other works exist for a flow scenario appropriate to the governing
equations utilized, a qualitative analysis of the new code can be made. Favourable comparison of
the code configured to solve such a problem (or problems) does not, however, guarantee that
errors have not been made. The relative contribution of each term in the governing equations will
change when the code is applied to other problems. An error in discretization or coding may not
show up for the comparison case (or cases) chosen. Obviously, a more reliable procedure is
needed to ensure that all errors are found and eliminated.

The particulars of the verification procedure contained herein were developed in support of
a much larger study®>~% using a method first formally formulated by Shih.® The work was
conducted to confirm the integrity of a computational scheme developed to model the conjugate
conduction—convection processes taking place in a heat barrier piston internal combustion
engine with a fully functional valve. The problems associated with representing the thermal
characteristic of a moving valve while also handling the conjugate heat exchange between a fluid
flow field region and a metal non-flow region (with the exterior temperature boundary conditions
specified) resulted in the creation of a number of special requirements. This combination of
requirements further resulted in, among other things, a three-region approach.* In regions 1 and
3, shown in Figure 1, a Eulerian description is applicable. In region 1 the position of all solution
nodal points is fixed in space and time. In region 3 the motion of all solution nodal points is
slaved to the piston motion and they move without distortion relative to one another. In
region 2 the mesh is stretched and compressed in accordance with the piston motion and has
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instead a Lagrangian description. Both the interfaces between regions 1 and 2 and between
regions 2 and 3 required the development of a special matching procedure.* Thus the original
aims of the analysis described herein were twofold: (1) the validation of several of the innovations
required to solve the problem described above and (2) the verification of the integrity of the
resultant solution code.

Results of a preliminary validation analysis with the above two aims in mind are contained in
References 6 and 7. Considered in this earlier study was the computation of the primitive
variables u, v, k, ¢ and T subject to a constant pressure flow field. Thus the integrity of the pressure
correction scheme was not investigated. The procedure presented herein, however, includes
a method for the validation of a pressure correction scheme for pressure fields that vary both
spatially and with time.

FORMULATION AND GOVERNING EQUATIONS

A precise mathematical formulation of the general procedure employed herein to analyse error is
contained in Reference 5. The essence of this procedure is also briefly described in verbal terms in
Reference 8. The following paragraphs present a formulation equivalent to Reference 5
mathematically and yet very different in format to accommodate the nomenclature in use in
References 2—4.

In axisymmetric co-ordinates, isotropic turbulent convection with swirl neglected requires in
general a coupled set of six partial differential equations to adequately account for turbulence,
energy, linear momentum and continuity. Each of the equations in this set has the same general
form and is represented compactly below by the general transport equation in terms of the
primitive varible ¢:2

o, 0x 0

where ¢ can be either 1, u, v, k, ¢ or T. Equation (1) is a Lagrangian description of the flow
applicable to piston engines and is a transformed version of the general Eulerian-based governing
equations. The expression u is equal to u—xu,,, where x is the non-dimensional axial co-ordinate
in Figure 1. The term J,, is the axial length of region 2 (Figure 1) and is a function of time. The
term u,, is equal to dd,/dt and represents the velocity of the piston. Equation (1) has utility in
region 2 as expressed. Its utility in region 1 is obtained by setting u, equal to zero and J, equal to
distl. Similarly, its utility in region 3 is obtained by setting J, equal to dist2 and leaving u,=u,.
A summary of the S, and I, applicable to each ¢ is given in Table I. In regions 1 and 3 the
‘untransformed’ source term S, can be obtained from those given in Table I using the same
specifications given above for these two regions.

References 6 and 7 give a description of the discretization of the general transformed flow field
transport equation (equation (1)) along with details of the discretization of each of the source
terms contained in Table I. For this discretization a staggered grid arrangement is employed with
the faces of the control volume midway between nodal points. For the work in References 2—4
and herein the power-law spatial-differencing scheme® for the approximation of the convec-
tion—diffusion flux terms is used. Finally, implicit differencing in time is used. The resulting set of
algebraic equations representing the transformed general transport equation for the primitive
variable ¢ becomes

I,0 0 =
5 2 (o5 ¢)+ 2 (o) + 2 (rpod)= 5 . ("’ "’)+,ar( T, ¢)+S¢, M)

(ap+Mo_§p)¢=Zam¢m+§u+Mo¢o’ i (2)
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Table 1. Transformed governing equation source terms

Equation ¢ T, Ss
Continuity 1 0 0
. 1éP 190 Hetr ou 1@ Thets v 2
Axial
Xial momentum R W A 6x(5 o) ra\s, ox) 35, 0x eV
Radial mo am v 3P 19 Ou -1—l 9 r o
....... Hess 6r 5 6x ﬂerr ror Hess or

v 21
—zl‘effrz___ [r(pessV - u+pk)]

Turbulence kinetic energy k Ea’—f—f —Cppe+G (see transformed G below)*
k
Turbulence kinetic energy & Uest € -
2C, G~ .
dissipation rate o, k(c1 Cap)+peV-u

Ener, T L a_P_f_ Q.'._lia_P_‘_vz{)._*_G
& ORI e M I P

1u\ [0N\* [v\®> 1{ou 1 dv\*
* - —_ — - - —_— . .
G-—Zp,"[(é F™ ) +(ar) +(r) *2(ar+a,ax> ] V- u(p V- u+pk)

16u v dv k? M G k?
Vim0 = — Jar=atgE
" 3, ax+r+ar’ #er=p+Cup g T Pr, Pr.p &

wherem=N, S,E, W, a,=) a,,, a, is defined in detail in Reference 3, M°=(pV/At)°, superscript

‘0’ indicates the previous (‘old’) time step and V is the volume of the control volume in question.

For each primitive variable ¢ equation (2) thus represents an algebraic approximation of the
general governing transport equation (1). It would be nice if a series of analytical expressions for
all the ¢s could be found in order to test the validity of using equation (2) as an approximation of
equation (1) for each ¢. In the real world, however, an analytical solution does not exist for
equation (1) for any of its primitive variables. Despite this fact, for the purpose of analysing the
equivalence of equation (2) to equation (1), it will be assumed that the primitive variables u, v, k,
gand T can be quantified analytically in such a way so as to satisfy a modified version of equation
(2). Similarly, the combination of the u- and v-momentum equations and the continuity equation
will be assumed to support an analytical expression for the variable P. In general it is assumed

that
o= ¢(xa 1), (3)

subject to Dirichlet boundary conditions for all ¢. For clarity, Dirichlet boundary conditions are
obtained from the analytical expressions for the various ¢s evaluated at the boundary. For the
continuity equation ¢ will still equal unity. P, however, will equal P(x, r, t) and will be solved for
numerically using the continuity equation. Pressure will thus be considered the sixth primitive
variable instead. Obviously, no combination of ¢ =¢(x, r, t) for all six primitive variables exists
that can be used to simultaneously solve the six equations represented by equation (1) or
equation (2). However, the correct selection of ¢ =¢(x, r, t) for all six variables can be used to
simultaneously satisfy the six equations represented by the modification of equation (2) given
below:

(ap+M°—§,,)¢=Z am¢;+s_u+Mo¢o+CRanal,V¢a (43)
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where

1 when error analysis utilized in computer code subject to
Dirichlet boundary conditions,

C=
0 for solution of real problem subject to boundary conditions (4b)

specified in References 24,

Ranal = Hd’ (X, r, t)—" S_¢(x, r, t)9 (40)
- -, Ty00 o¢
Ho= m(f’ ,,¢)+ ( ¢~—ax)+——< 4’“’%?)' (4d)

Thus Rgna, is obtained by simultaneously substituting the ¢(x,r,t) expressions for all six
primitive variables into each of the six equations represented by equation (4c). In effect the
¢(x, y, t) expressions become the solutions to the new set of six equations represented by equation
(4a) subject to Dirichlet boundary conditions on all geometric boundaries and on the previous
time step boundary. These primitive variable expressions will also satisfy a modified version of
equation (1), namely

H¢= §¢ + Ranal,- 8]

It should be noted that these ¢(x, r, t) expressions thus represent a set of particular solutions for
the equation set represented by equation (5) and may therefore be loosely referred to as analytical
solutions for the same. Discretization of equation (5) in a manner identical to the discretization of
equation (1) will result in equation (4a) with C=1. The numerical solution of equation (5) for
Dirichlet boundary conditions specified both for all geometric boundaries and for the initial time
boundary can thus be obtained through the solution of equation (4a) subject to these same
boundary conditions. The results of this numerical solution are values that can be compared with
the known solution, namely ¢(x, y, t), for each primitive variable.

For comparison with Ry, for various ¢s, an expression for Rpun, was also derived using
equation (4a) with C=1:

R.m...=$[(a,,+M°—§.,)¢—<z am¢m+§“+M°¢°>]. ©
[ m

It should be noted that the above formulation is only able to test the accuracy of the
discretization and coding process for each of the six governing equations. It does not provide
a means for testing the specification and coding of the wall functions in References 2—4 used as
boundary conditions. With the expression Rgns, added to the source term, the governing
equations (4) are altered such that they are valid right up the ‘wall’ of the solution scheme where
Dirichlet values are specified. It should be further noted that it is the integrity of both the
discretization of the governing equations and the coding of the algebraic expressions that results
from this discretization process that is being tested. It is not the testing of the validity of the
governing equations themselves that is under scrutiny in the present analysis.

APPLICATION TO THE TURBULENT CONVECTION PROBLEM

The specification of ¢(x, r, t) for use in the validation of the scheme used in the solution of the
particular set of governing equations given in the previous section is by no means an arbitrary
process. As alluded to in Reference 5, these expressions should in general be chosen so that the
truncation errors associated with a finite difference formulation vanish or are at least sufficiently
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small. This puts upper limits on the powers of the terms used to construct each function. On the
other hand, it is desirable that the functions chosen be made up of terms with high enough powers
that they do not vanish when substituted into their respective governing equations. If they do
vanish, it should only be either the result of the final differentiation of the function in one of the
higher-order differential expressions or the result of the algebraic summations of several sub-
expressions. Additionally, the function set must be designed in such a way so as to ensure that the
functions interact with each other in the governing equations in a ‘reasonable’ manner. It was
found that if the construction of one or more functions in the function set is unrealistic compared
to others, equation (4a) either may not converge or may converge to incorrect values.

As an example of the implementation of the above guidelines, consider the selection of the
primitive variable P. The dominant source term in the »-momentum equation is often —dP/dx for
internal flows. The dominant convection—diffusion term is expected to be d(piu)/0x. A selection
of analytical expressions for P and u which reasonably satisfy these dominant terms is preferable if
convergence to correct values is to be guaranteed. Also, if the discretization used for dP/dx gives
a third-order truncation error (as it does in the case of a staggered grid), the highest power of x in
P(x,r,t) must not be greater than four. This determination will guarantee the truncation error
(Ax/2)?63P/x3 to be sufficiently small for reasonably fine grid spacing. All the above is also true
for the modelling of P relative to the v-momentum equation. In the energy equation P is used,
among other places, in the dP/dt term. When considering the Lagrangian formulation of the
energy equation, the change in P with time must be of the same power of exponent for ¢ as the
change in the size of the energy equation control volume (¥4) with time. The size of V1 is in turn
a function of 6,(¢). To ensure convergence to correct values, the order of the exponent associated
with time ¢ in the specification of P must thus contain the use of the same order of exponent of ¢ as
is used in the specification of J,(¢). In Reference 4, 8, in region 2 is specified as a trigonometric
function which accounts for piston motion. For this error test, however, it was found necessary to
respecify 8, in region 2 as an expression containing powers of ¢ in order to make possible
a correctly coupled expression for P. This combination of constraints along with others were all
involved in the specification of P(x, r, t) relative to the selection of T(x, r, t), 5,(t), u(x,r,t) and
v(x, 7, t).

Using the same type of analysis for the other primitive variables, the following specifications for
¢ were arrived at after significant analytical work and much trial and error:

u=tx?r, U
=—%txr?, 8
k=Cgxr(x+nt, )]
e=Céx?ritC,, (10)
Psgsc—lot—z(%xzr‘—x‘rz)+3cg, (11
4R
T=—Cytx?r?+3C,, (12)

where Cg, C,, Cg, Cy and C,, are constants (specified as 0-75, 0-8888, 500, 500 and 1000
respectively). Although these functions all tend to infinity in magnitude as time approaches
infinity, they are only intended for use in relatively close vicinity to ¢

The selection of
p=Cio/R E)

was made corresponding to the assumption of a constant density fluid with a gas constant R.
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Specification of p as a function of x, r and ¢ instead would greatly and unnecessarily complicate
the R;pa1, expressions. It should be noted that the selection of equation (13) for an equation of
state also serves to decouple all the other governing equations from the energy equation. This is
because this specification has the effect of making the fictitious test flow incompressible. In
References 2-4, which deal with a real world problem, density is specified as a function of T, P and
various species concentrations. Thus in References 2—4 all the governing equations are coupled.
The equation (13) specification for density results in an average value which falls within the range
of those expected for this property in the real calculations given in References 2—4.

Piston motion for the error analysis within region 2 was specified as the increasing function

6p(t")=cllto+cl2(tn)2a (14)

where C;; and C,, are constants equal to 0-0014826 and 0-0081545 respectively. Note that the
superscript ‘o’ on the first ¢ indicates the old time value of t. In regions 1 and 3 the expression
O,(t") was set equal to the constant values distl and dist2 respectively.

The values chosen for the seven constants C4—C,, are based on several considerations. First,
they ensure that the resuitant values of all ¢(x, r, t) and J, are all reasonable over the range of
x and r and the domain of ¢ used in the test. Also, they help to enable a realistic interrelationship
between these variables. An attempt was made to have values for the various ¢s within the range
of values expected in ‘real’ calculations.2~*

It should be noted that in the construction of equation (7) in conjunction with equation (8) it
was necessary to satisfy the transformed continuity equation. Further, these two specifications
define a vector field which is well out of alignment with both the axial and radial axes when values
of x and r are sufficiently close in magnitude. The latter is preferable in providing a good test for
the power-law convection-diffusion flux discretization formulation used in the analysis.? Finally,
it should be noted that these specifications give algebraic expressions for V-u which cancel to
zero. Since V -u expressions exist in four of the governing equations, this greatly simplifies the
algebra of the resulting Rap,, for these equations.

Substitution of equations (7)-(13) into equation (4c) resulted in the expressions for Rqpay, for the
five ¢s summarized in Table II. H¢ for the continuity equation is equal to zero, as is its source
term. Boundary conditions for the error analysis are depicted in Figure 2. It should also be noted
that because of the pressure correction in the solution of the continuity equation, it was also
necessary to prespecify the analytical value for the pressure at one of the interior nodal points to
serve as a pressure reference point. Whether such a specification is necessary or not is dependent
on the algorithm used to solve for the pressure field. In the analysis conducted in References 2—4
a pressure correction procedure was used to obtain the pressure field. In such an approach the
continuity equation does not make use of the Dirichlet boundary conditions for pressure directly.
It does use these conditions indirectly and they are also used directly in the computations for u, v,
T and P. In the exercise herein the equation of state is p =const (equation (13}). If p were instead
a function of 7, P and other variables, the pressure correction scheme employed would not need
a prespecified reference point. However, allowing p to equal p(P, T), for example, would, as
mentioned earlier, result in much more complicated expressions for Rana, than those given in
Table II.

The use of the above formulation in a flow field with a combined Eulerian-Lagrangian
description was found to require a special approach. It was found that in general it is simpler and
more computationally efficient to solve regions 1, 2 and 3 together as opposed to solving in an
iterative manner back and forth between each. When solving all regions together, the use of
¢=¢(x,r, t), is however, complicated by the fact that the transformation for the dimensional
axial co-ordinate (z) to the non-dimensional axial co-ordinate (x) varies with region. The
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Table II. R, for various primitive variables (Hp—S,)

¢ H¢

S¢

1
u —{x2r+4$2x3r?)—(a+b(x+1)?)

X <2tr+ tfr—)—b(x+r)(4xr+2x2)t

oP 2Cs
—_ —2p2)p 20 2
ax+2b(x+r)(2xr $ré)e 3‘Rl(2xr+r I3

1 JéP
v R—(—S‘xrz+§t2x’r’)+(a+b(x+r)2(% tx) —5+[a+b(x +7)234tx+2b(x + M (x2 ~$ x1)t
1
+b(x+r)Er: +5xr)t
—293(2x2+3xr)t
3R,
C _
k R—s(xr(x +r)+2xrigx—3n) —% Cix*r’tC,+G (see transformed G below)*
1 1

2
—(ay +b,(x+r)2)(4x+x7+2r) Cet
—2by(x+7)(x*+4xr+r*) Cst

Cﬁer7

1 2.2 2,3,3
& —XxXr*+5t°x°r
[Rx( ¢ ) x+r

—(@+ba(x+rP( +2x%)2t

_C
(CIG—~2 C?,xzrth—,)
R,

—2b,(x+7)(xr* + x’r)2t] cic,

1 1{éP oP oP _
T ——(x*r*+32x*r%)C ——+v—+u—+G
R,( 3 )Co Co\ ot or Ox
1
+—(asz+b3(x+r*(r* +2x2)2tCy
G
2
+-C—b3(x+r)(xr2+x2r)2tc9
P
* G=2La+b(x+)*1(dx*+ ¥ x2r? +§r4)12
B . .
a=p, a‘—a.’ az P ay Pr,
b C, . _ Cu C,t Gt R.— R
RC;” ' RiGa’ TR Cie” U RPRC,; ' Che
6_P__ 4_ szﬂ g_“za_A'zCB E_ z4_42tcﬂ
ax—(?xr 4x3r )ZR, s ar—(’g?.x rd—2x*r) T at—(éx rt—x4r )-R—1

expression of x for each region in terms of z is as follows:

V4

. __Z i 15
region 1, X Gistl 1-0; (15a)
—distl
region 2, x=z——s—; (15b)
6P
—dist1 -4
region 3, x=104 295" "% (15¢)

dist2
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Figure 2. Dirichlet boundary conditions used in error analysis

Thus x has a different meaning in each region. The solution to this problem was found to be the
specification of ¢ as ¢(z, r, t) throughout all three regions instead. The meaning of z does not vary
with region. The expressions for Rgga,(z, 7, t) become identical to those given in Table II with all
the xs physically replaced by zs, assuming all the xs in equations (7)—(13) are also replaced with zs.
For applications which require only a Eulerian description, é,=1, #=u and x=z throughout.
Thus, for such applications it is preferable to use ¢(x,r, t). For flow solutions with a strictly
Lagrangian description, using ¢=¢(z, r, t) should prove easier. For the latter, however, either
approach may be used.

During the iterative process of constructing equations (7)—(14), discrepancies were encountered
between the computed and analytical values at various locations. Not knowing whether these
discrepancies were due either to coding and discretization errors or to function ¢ selection, it was
found necessary to break the problem down into smaller problems. References 6 and 7 give the
details of the discretization of each of the source terms in Table I and break each §; down into
sub-expressions (such as vsl, vs2, vs3, vs4 and vs5 for S,, etc.). It was found convenient to
calculate both analytical and numerical values corresponding to each of these sub-expressions for
comparison. This enabled the causes of various discrepancies to be quickly pinpointed.

In addition, the solution algorithm was designed so that for most cases the primitive variables
could be solved for numerically in a manner independent of all other variables. This was easily
accomplished by prespecifying the analytical values of all other primitive variables at each
solution nodal point and by then not recomputing the values of those not being solved for. Thus
the discretization and coding of most of the primitive variables could be analysed one at a time.
This and the specification of both the analytical and computed values of each source subterm
enabled an exacting verification to be made of the code used for the analysis given in
References 2—-4 and 9.
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DISCUSSION OF RESULTS

Several series of error test runs were conducted during the development of the solution code as
a means of checking for mistakes both in the discretization of the governing equations and in the
actual programming of the code. The first set of tests was made on the code representation of the
untransformed equations for u, v, k, £ and 7. In these tests the spacing was uniform for both the z-
and r-co-ordinates. Afterwards, the code representation of the transformed equations for these
same five primitive variables was tested with non-uniform spacing in the z-direction but with
uniform spacing in the r-direction.

At a much later date, just prior to the final data runs for the analysis of the real world problems
reported in References 2—4, another series of tests was conducted. The results of these tests are
given in References 6 and 7. The rationale for this later round of tests was to ensure that no errors
had been inadvertently inserted into the programme in the interim. For all these and earlier runs
the pressure was specified as a constant and a simplified expression for temperature was used
instead of that given in equation (12).

Reported herein are only the results of a series of tests conducted much more recently and
which consider the influence of pressure gradients throughout the solution region.

The geometric values used in the formulation of the boundary conditions for these recent runs
(see Figure 2) are as follows:

2,=0=0974m, rep=10144m, ry,,.=106424m, distl=004m, dist2=00033333 m.

The time domain boundary conditions corresponding to the previous time step were specified
for ¢(x, r, t — At) using a time step At =0-000 5263 and a current time "= 1578 95 s. The value for
At used is based? on 1/RPM and an RPM (revolutions per minute) of 1900. The t"-value creates
a 8,(t) that gives the desired region 2 grid spacing for the test. This selection also affected in turn
the specification of the error elimination constants C4—C,, given earlier.

The error analysis algorithm was programmed in such a way so as to facilitate the testing of the
code representation of one primitive variable at a time as well as any combination of primitive
variables at a time. As mentioned, those variables not being tested had to be prespecified
analytically owing to the fact that the governing equations are coupled.

The results of eight of the many runs conducted for the configuration given above are listed
herein. All these runs are based on an 8 x 7 mesh (including boundary nodal points). First a series
of individual variable runs for the primitive variables u, v, k, ¢, T and P were made. It was found
that the maximum computed percentage error over the entire solution field for each variable was
less than 0-0139%. This is despite the fact that a maximum percentage error of the order of 0-1%
would have been deemed acceptable for these individual runs. The maximum percentage errors
for each of the primitive variables are: u, 0:01329%; v, 0-0096%; k, 0-0041%:; ¢, 0-:00504%; T,
0:0139%; P, 0-0112%. The individual solution run for ¢ made use of the simultaneous solution for
k. Similarly, the solution for P required the simultaneous solutions of # and v. The least accurate
of these individual runs was found to be the solution for the energy equation. Results of this run
(for T) are given in Table III to show the typical values one can expect for such a calculation. At
the bottom of this table the computed values of temperature are repeated. Given in addition at the
bottom of the table are the x- and r-co-ordinate values corresponding to each of the scalar
solution nodal points. These are thus the same positions used for k, ¢ and P for both the individual
and combined runs. A combined run for the variables u, v, k, ¢ and T resulted in maximum
percentage errors of: u, 0:01333%; v, 0:0099%; k, 0-:0042%; ¢, 0:0052%; T, 0-0137%. The
primitive variable values obtained in this run were almost identical to those obtained for each of
the individual runs for the same variables. In Table IV the computed values of u and v for this
combined run are given with the x- and r-co-ordinate values corresponding to each of the
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Table IIl. Energy equation data, individual run

1431

i j Tum Tonat Tnum * VO! Fanal * VOI %T error
3 2 764-94 764-89 76-4103 76-4119 0-006807
3 3 757-86 757718 94-0932 94:0938 0010857
3 4 74775 747-65 79-7972 79-7990 0013854
3 5 743-54 743-45 63-9459 639452 0012093
3 6 736-30 736-24 822141 82-2148 0-007959
4 2 758-84 758-81 47-1051 47-1081 0002863
4 3 751-68 751-64 58-0067 58:0092 0-005051
4 4 741-49 741-43 49-1971 49-1968 0007993
4 5 737-25 73720 39-4209 394228 0006450
4 6 729-96 729-93 50-6871 50-6865 0-003980
5 2 750-18 750-16 568227 56-8260 0002595
5 3 742:94 74291 69-9750 69-9764 0-003829
5 4 732-62 732-58 59-3466 59-3465 0-006657
5 ) 728-34 728-30 47-5557 47-5563 0005380
5 6 72097 72094 61-1469 61-1441 0-003810
6 2 741-48 741-47 58-4559 584578 0002387
6 3 734-15 734-13 71-9839 71-9863 0-003093
6 4 72371 723-67 61-0491 610515 0-005760
6 5 719-38 719-35 489234 489228 0004624
6 6 71193 711-90 62-9017 629014 0-003592
7 2 732-73 732:72 60-1231 60-1258 0002149
7 3 725-31 72529 74-0419 74-0408 0-002449
7 4 71475 71472 62-7926 62-7945 0-004851
7 5 710-37 71034 50-3204 50-3196 0-003798
7 6 702-84 702-81 64:6979 64-6977 0003291
8 2 723:93 723-92 67-2849 67-2867 0001661
8 3 71642 716-41 82-8598 82-8594 0001482
8 4 705-73 705-71 70-2746 70-2742 0003122
8 5 701:30 701-29 56:3114 56:3136 0002332
8 6 693-69 693-67 72-4052 72-4048 0002499
Temperature
j i=3 i=4 i=5 i=6 i=7 i=8 r
6 736 x 102 730x 102  721x10> 712x10%2  703x10%2 694x 10> 10140
5 744%x102 737x102  728x102 719x10> 710x10%2 701x10% 10092
4 748 x 102 741x102  7:33x102  724x 10> 715x10> 706x10> 10064
3 7-58x10% 7-52x10%2  743x102  734x 10> 725x102  716x10% 09996
2 765x 102  7-59x 102 - 7:50x 102  7-41x10%2  733x10%2  724x 10> 09948
x —0-40000 0-00000 0-250000 0-50000 0-75000 1-00000
z 0-97000 097400 097967 0-98533 099100 099667

non-scalar solution nodal points. The values for the x- and r-co-ordinates given here follow from
the use of the staggered grid arrangement described in Reference 3. A combined run for P and
T was also conducted. As before for P, the simultaneous solutions of u and v were required. For
this run the maximum percentage error for P remained unchanged from that of the individual run
(0-0112%) but the maximum percentage error for T increased slightly to 0-025%. Also, as can be
seen from Tables III and 1V, both the x- and r-spacings for all these runs are non-uniform.
Figure 3 is a vector plot for the flow using the vector sum of the u- and v-velocity components in
the vicinity of the scalar nodal points. The tail of each of these vectors shows the location of the
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Table IV. Velocity field from simultaneous solution of equations for u, v, k, e and T

u-velocity
j i=4 i=5 i=6 i=7 i=8 r
6 1-51 1-53 1-55 1-56 1-58 1-0140
5 1-51 152 1-54 1-56 1-57 1-0092
4 1-50 1:52 1-53 1-55 1-57 10064
3 1-49 1-51 1-52 1-54 1-56 0-9996
2 1-48 1-50 1-52 1-53 1:55 09950
X —0-20000 0-12500 0-37500 0-62500 0-87500
z 097200 097683 098250 098817 099383
v-velocity
j i=3 i=4 i=5 i=6 i=7 i=8 r
6 —1-04 -1-05 —1-06 —1-06 —-107 -107 1-0116
5 ~1-04 —~104 —1-05 —1:05 —1-06 -107 1-0078
4 —103 —103 —1-04 —1-04 —1-05 —1-06 1-:0003
3 ~1-02 ~1:02 ~1-03 —103 —104 —1-04 09972
x —0-40000 000000 0-25000 0-50000 0-75000 1-00000
z 097000 0-97400 097967 0-98533 099100 0-99667
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. 964 1.0

Figure 3. Velocity vector plot

corresponding scalar primitive variables. The magnitude of the arrows represents the vector sum
of the u- and v-vectors having the same i- and j-indices. The locations of the true tails of each of
the individual u- and v-vectors are the x- and r-values given in Table IV for each velocity. Figures
4-7 represent plots of isocontours of the primitive variables k, ¢, T and P respectively. Because of
the extremely high accuracy involved in the numerical solution, these five figures (Figures 3-7)
represent both the analytical and numerical solutions of the governing equations for the Dirichlet
boundary conditions given in Figure 2.
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Figure 4. Turbulence kinetic energy distribution
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Figure 5. Turbulence kinetic energy dissipation rate distribution

Figure 3 makes it clear that the flow is oblique to the solution grid. An overlay of Figure 3 on
each of Figures 4-7 makes it clear that a non-zero gradient exists for each of the dependent
variables along the direction of flow everywhere in each of the primitive variable solution
domains. These two conditions are the prerequisites for false diffusion to occur® if the Peclet
numbers (P,,, m=e, W, 1, s) of any of the mesh cells become large. As can be seen from the bottoms
of Tables III and IV, the grid spacings in both the z- and r-directions have been kept sufficiently
small. The largest P,-value for any of the variables for the combined variable run given in
Table IV is only 0-027. If values of P, were not so constrained, one would not expect the
excellent comparison obtained in this study with the use of the power-law spatial-differencing
scheme for the numerical approximation of the convection—diffusion flux terms.
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Figure 7. Pressure distribution

CONCLUSIONS

As can be seen from the data for both the individual and combined runs given in the previous
section, the comparison between the numerically computed values of the various ¢s with the
actual (analytical) values is excellent for all six primitive variables, both when they are computed
individually and in combination. Such resuits point to the confidence that can be placed in
numerical calculations for a sét of very sophisticated governing equations, assuming the equation
set accurately models the flow process. Also, these results demonstrate the viability of Shih’s
debugging procedure to problems where a large set of complex governing equations applies. The
procedure outlined herein has been demonstrated for fairly general governing equations. For



ERROR ELIMINATION PROCEDURE FOR TURBULENT CONVECTION 1435

axisymmetric calculations which require modified versions of the governing equations, changes
can easily be made to Table II on a term-by-term basis by either adding or subtracting the
appropriate analytical expressions as necessary. For example, many turbulent fluid problems can
be adequately described by a set of simpler governing equations which do not include the final
expressions in each of the source terms given in Table I for u, v and &. For such problems the
deletion of the final expressions given in Table II for the source terms (S,) for u and v is all that is
needed to correct Table II. No change in the source term for ¢ is necessary. Thus it can be seen
that, without much additional effort, other researchers will be able to adapt this work to a variety
of problems.

However, perhaps the most significant of the findings recorded herein is the fact that the same
error elimination formulation may be used for both Eulerian and Lagrangian descriptions. This
makes possible the application of this formulation, without modification, to flow field solutions
which involve combined Eulerian-Lagrangian descriptions. Finally, this study validates the
special matching procedure (reported in Reference 4) used to merge portions of the flow field
having a Eulerian description with those having a Lagrangian description.

APPENDIX: NOMENCLATURE

Ay coefficient of combined convective/diffusive flux through the designated wall of
a control volume (m=N, S, E, W)

a, sum of coefficients of combined convective/diffusive flux through control vol-
ume walls

C number equal to unity when solving using error analysis formulation and equal

to zero otherwise
C,,C,, Cp, C, constants of turbulence model (1-44, 1-92, 1-00 and 0-09 respectively)

Ce—Cis constants used in error elimination procedure

G, specific heat at constant pressure (1-0kJkg™ ' K™!)

dist1, dist2 axial lengths of solution regions 1 and 3 respectively

G G generation of turbulence kinetic energy term (untransformed and transformed
respectively)

H differential operator defined by equation (4d) for the general primitive variable ¢

ij indices in axial (x and z) and radial (r) directions respectively

k turbulence kinetic energy

M mass in a finite difference cell volume divided by the computational time
increment

P pressure

P, Peclet number (m=n, s, e, w) defined in Reference 3

Pry, Pr, laminar and turbulent Prandtl numbers (1-0 for both)

r radial co-ordinate

R gas constant (value for air used throughout)

5,5 source terms in untransformed and transformed governing differential equa-
tions respectively

S, portion of integrated source term which is multiplied by ¢p

S. portion of integrated source term

t time

T temperature

u axial velocity in Eulerian frame

7} axial velocity relative to moving co-ordinate frame (Lagrangian)
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Greek symbols

s
Hest
Ok, O;

T

¢
v

Subscripts

eff

1

n,s, e w
P,N,S,E W
t

¢

Superscripts

n
o

D. A. BLANK

radial velocity

cell volume

non-dimensional axial co-ordinate

axial co-ordinate

Instantaneous distance equal to the combined axial lengths of regions 1, 2 and 3

a parameter (u/Pr)

diffusivity

increment

instantaneous axial length of region 2 (z,—dist1 —dist2)

time increment

dissipation rate of turbulence kinetic energy

laminar dynamic viscosity and turbulent viscosity respectively (y, is specified
throughout as 178 x 10" 3m?s™!)

effective viscosity (u+ ;)

density

constants for turbulence kinetic energy and turbulence kinetic energy dissipa-
tion rate respectively (1-0 and 1-2 respectively)

shear stress

primitive variable (1, u, v, k, e or T)

divergence operator

effective

laminar

cell boundary locations of finite difference grid
nodal points of finite difference grid

turbulent

primitive variable (1, u, v, k, e or T)

new time level
old time level
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